Monday, January 7, 2019

Pascal's Triangle


1
1 1      1
2 1   2    1
3 1   3    3    1
4 1    4   6    4    1
5 1   5   10   10   5   1
6 1   6  15   20   15   6    1
 1  7  21  35  35   21     7   1

On the last post we looked at binomial expansion.  It involved calculating combinations as well as carrying large numbers and was not very easy.  With Pascal's triangle we, there is no need to calculate combinations because they are given on the table.

So lets look at the table.  The numbers in red are the order of polynomial ad the number go in front of the variable from left to right.  To show this lets say that we wanted to see what (x+1)⁴:

This equation is 4th order.  So we use: 1       4       6        4         1
This becomes:   (x+1)⁴=x   +  4 x³   +   6 x²   +    4x    +     1= x⁴+4x³+x²+4x+1
That's pretty nifty isn't it?
If we wanted (x+y)⁴=x⁴+4x³y+x²y²+4xy³+y

 So you might ask if you need to memorize this table of does this table only go down to 7th order equations.  The answer is no to both questions.  You can construct this table and it goes down to as large a order as you want.

How do we construct it.

Start with                                                                                                  1
Put 1 on outside of the 1                                                                        1    1
Put one on the outside of the 1 and add the middle numbers:             1    2    1      (2=1+1)
Repeat                                                                                                1    3    3   1    (3=1+1)
Repeat                                                                                             1    4     6   4   1   (4=3+1) (6=3+3)

So if you are observing, you will see the number in the triangle is between two numbers and it is the sum of those 2 numbers.

The order of the equation starts at 1  at the two 1's ie                               1   1    1
The numbers descend from 1 from there:                                                2   1   2    1
                                                                                                               1    3   3     1
                                                                                                         ...................................

So just to show how easy it is if we had (x+1)⁸=x⁸+8x⁷+28x⁶+56x⁵+70x⁴ +56x³+28x²+8x+1

Homework:  Construct the 8 the through 10 order of pascals triangle.  I will be posting a large table soon so check back. 

                                                                                                            




¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹   

No comments:

Post a Comment