Sunday, January 20, 2019

Simple Factoring of Quadratics


How do you factor quadratics?

We are going to learn a simple method for factoring quadratics when the leading multiplier is 1 and the quadratic has non-complex integer solutions that are positive.
If you are at this point you have learned how to FOIL if not visit the link.

Lets expand (x+8)(x+21)
(x+8)(x+21)=x²+29x+168

Now how would we factor something like this if we did not know what the factors are.
If we expand a quadratic, it looks like this:  (x+A)(x+B)=x²+(A+B)x+AB
The second term or the number before x is the addition of 2 roots or A+B
The last term is the multiplication of 2 roots or AB.

First If we factor 168 into all of its roots, we will find all potential factors:

168 factors into these pairs:     1         168
                                                 2         84
                                                 3         56
                                                 4         42
                                                 6         28
                                                 8         21
                                                 12       14
                                                 24         7

Now we see which 2 pairs add up to 29.  The only 2 that add up to 29 are 8 and 21.

Lets do a couple of simpler problems where we do not already know the factors:

Example 1:      x²+12x+32

Lets factor 32:                                                     32
                                                                          2    16
                                                                                2    8
                                                                                     2   4
                                                                                         2   2
                                                      or
                                                    1         32
                                                    2         16
                                                    4          8

So
1 and 32 add up to 33
2 and 16 add up to 18
4 and 8 add up to 12 so this is our solution set so it looks like this factored:
x²+12x+32=(x+4)(x+8)

One more example:
x²+10x+21

 Lets factor 21:                                                 1        21
                                                                         3         7

We see the only 2 number that add up to 10 are 3 and 7 so:
x²+10x+21=(x+3)(x+7)

In a future post we will do numbers with negative roots.







1 comment:

  1. We can try to factorise also by using the quadratic formula with Delta, b^2-4ac, and keeping in mind that ax^2+bx+c=0 equals to a(x-x1)(x-x2)=0, where x1 and x2 are the conjugated roots of the quadratic equations, x1=(-b+sqrt(delta))/2a, and x2=(-b-sqrt(delta))/2a

    ReplyDelete